Human Computer Interaction

The human-computer interaction in multisensing platforms has recently become an area of increasing interest. As a larger diversity of sensors find their way onto industrial applications as well as consumer-related domains, methods of interpreting the results from these sensors in a human friendly manner are necessary for effective and efficient operation. The communication between human and computer is a two-way process that should consider interpretation of sensor results to the human and interpretation of information from the human user to the machine. Furthermore, many more applications are considering contexts in which nonexperts may be involved; consequently, the interaction should be designed to facilitate these requirements.

The increase in sensing ability has created a particular challenge to the problem of human-computer interaction and specifically the communication process. As sensing technologies have extended our ability to perceive our environment, for example infrared, sonar, tactile and chemical sensors, there still needs to apply a method of translation from the "new" information from these complex sensors to the human perceptual domain. According to Siegel [18], this challenge has reshaped the sense-think-act paradigm generally accepted for sensing systems in robotic systems to include "communicate" as one of the essential components to robotic platforms.

The problem is to determine a means to convey information arising from sensors with more acute perception or even no counterpart in the human sensing apparatus. In some sensing systems, using scaling techniques may function as a method to translate the incoming sensor data into the human perceptual domain. For example, ultrasonic sounds can be scaled to lower frequencies and thus become detectable by the human ear. Other techniques may translate the results from one kind of sensor to another, such as using vision and color perception to view odor maps in which different colors represent various concentrations of the same odor. As the types of available sensor technologies change so do the kinds of human-machine interfaces. A new generation of interfaces is beginning to emerge that considers more advanced levels of communication, such as language and facial and body expressions, as a means of interacting with humans. Sometimes emerging technologies may require artificial sensing systems to perform higher levels of data processing, which may include categorization, conceptualization, and generalization and abstraction.

0 0

Post a comment