Let me summarize again the main steps, as I see them, in the development that brought about the modern age. To my mind it all started with William Thomson's calculations on the operation of the trans-Atlantic telegraph cable. It was the first time that higher mathematics had been used to solve an urgent engineering problem. It was the beginning of a trend that said that engineering intuition was fine but that it cannot always be relied on. Engineers had to accept that the solution of some design problems was provided by mathematical analyses of carefully set up models, and that the reason for adopting certain design parameters rested on nothing more than the results of that mathematical analysis. If it was against common sense, well, common sense must have been wrong.

Next came Maxwell's equations. Out of the blue. And still they turned out to be correct. It was a great event in the history of science but, as it turned out, it was also a great event in the history of engineering. True, it took a generation from Maxwell postulating his equations to Marconi making the first use of electromagnetic waves, but eventually the engineers got there. Signals could be picked out of thin air.

Next came electronics. Scientists claimed that the electric charge was carried by a tiny particle called the electron. How tiny? How much smaller is the mass of an electron than (say) the mass of a marble of i cm diameter? It is smaller by a number that has 28 zeros in it. It is just out of this world. Engineers had no other choice but to get accustomed to working with things they could not see. Those tiny electrons, performing various functions in vacuum tubes, made possible worldwide communications. From the 1920s it became possible to establish contact between any two points on Earth. It was very expensive of course, but it could be done.

Next came the solid state revolution which still used those tiny electrons, but this time they were safely tucked into bits of solid material. Reliability went up. Prices plummeted. Then came computers which used those solid state devices, and finally there came the digital revolution that made it possible to send signals from one point to another point, wherever they were, with great flexibility and with arbitrarily high accuracy.

This is the end of the story. Neither muscular power nor brain power will be required in the future to any extent. We still need a few people to run the whole apparatus and a few more software analysts to find the causes of occasional hitches in the system, but that's about all. I shall return to that brilliant future (will it really be that brilliant?) in the last chapter of this book.

Was this article helpful?

## Post a comment